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Placement of a scatter cone at the center of the secondary of a Cassegrain telescope greatly reduces
Narcissus reflection. To calculate the remaining Narcissus reflection, a time-consuming physical optics
code such as GRASP8 is often used to model the effects of reflection and diffraction. Fortunately, the
Cassegrain geometry is sufficiently simple that a combination of theoretical analysis and Fourier prop-
agation can yield rapid, accurate results at submillimeter wavelengths. We compare these results with
those from GRASP8 for the heterodyne instrument for the far-infrared on the Herschel Space Observa-
tory and confirm the effectiveness of the chosen scatter cone design. © 2005 Optical Society of America
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1. Introduction

The heterodyne instrument for the far infrared1

(HIFI) is one of three astronomical instruments cur-
rently being fabricated for the Herschel Space
Observatory.2 Herschel, equipped with a passively
cooled 3.5 m silicon carbide telescope,3 is scheduled to
be launched to orbit around the second Lagrange
point, L2, of the Earth–Sun system by the European
Space Agency in 2007. The HIFI is a spectrometer
that is expected to achieve resolving powers up to R
� 107, giving Doppler velocity resolution up to
c�107 � 0.03 km�s. The HIFI covers the frequency
range from 480 to 1250 GHz in five bands and the
range from 1410 to 1910 GHz in two bands, by use of
seven mixers and 14 local oscillator (LO) subbands.
Detection sensitivity is expected to be within a factor
of 3 of the theoretical quantum noise limit. In addi-
tion to the HIFI; Herschel will carry the photodetec-

tor array camera and spectrometer4 (PACS) and the
spectral and photometric imaging receiver5 (SPIRE),
together providing imaging and moderate resolution
�100 � ���� � 2000� spectroscopy over the
55�670 �m spectral range. Only the HIFI will be
considered here.

In a heterodyne detection instrument, some per-
centage of the mixer noise power leaks out of the
feedhorn. Portions of this beam are reflected back by
a number of telescope structures, but the secondary
mirror (M2, see Figs. 1 and 2) makes by far the larg-
est contribution. M2 is supported by three legs whose
surfaces are tilted and beveled to minimize multipath
scattering, and other telescope structures are well
outside the angle of appreciable acceptance of the
feedhorn. To reach the HIFI’s expected sensitivity,
care must be taken to minimize the effects of Narcis-
sus reflection from M2, some small fraction of which
reenters the feedhorn and causes a spectral baseline
ripple6,7 with a period of �� � c�2L � 3.6 � 107 Hz,
where c is the speed of light and L � 4.2 m is the
distance between the mixer and the M2. For the HIFI
frequency range of 480�1910 GHz, this period corre-
sponds to velocities of approximately 6�25 km�s,
which means that the baseline ripple, if its amplitude
is large enough, can potentially mask, mimic, or dis-
tort the Doppler-broadened spectral features that the
HIFI is designed to measure.

Although the degrading effects of Narcissus reflec-
tion can be alleviated by beam switching, which is
done by chopping the optical positions of the HIFI’s
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feedhorns in the telescope’s focal plane, or dual-beam
switching (nodding), its elimination by design is pre-
ferred, since small system changes between beam
switches can prevent complete cancellation. The
seven HIFI channels are listed in Table 1. Based on
measurements of the ripple structure generated by
prototype HIFI mixers after reflection of the signal
from a flat aluminum plate, and the assumption that
measurements will be taken over a time period of
150 s, the maximum allowable power coefficient of
reflection for each channel is listed in Table 2.

The power coefficient of reflection � is defined as
the square of the ratio of the heterodyne signal pro-
duced by Narcissus reflection to the signal that would
be produced by sending a beam into the feedhorn that
exactly matches its output [see Eqs. (5), (9), and (10)
below]. Another way to describe the Narcissus effect
is with the voltage standing-wave ratio; the relation
between them is that the voltage standing-wave ratio
equals �1 	 �1�2���1 � �1�2�. Calculating � is a problem
of long standing8 and has been addressed in a num-
ber of ways, such as various techniques of evaluating
the heterodyne detection overlap integral at M29–11

or applying the geometric theory of diffraction.12 Here
we report on a different method, based on Fourier

Fig. 1. Schematic geometry of the scatter cone, located at the
center of M2. Rays that strike the scatter cone are reflected away
from the center of the focal plane.

Fig. 2. Geometry of the focal plane and secondary mirror (the
scatter cone at the center of M2 is shown in Fig. 1). r0 is the radius
of M2; other dimensions are as shown. A feedhorn at point 1
illuminates the secondary mirror with an 11 dB edge taper and has
a virtual image at point 2. A feedhorn at point 3 has a virtual image
at point 4 and the center of illumination of the focal plane from this
image is at point 5.

Table 1. Herschel Bands 1–6Ha

Band
Frequency

(GHz)
�

(mm)
w0

(mm)
X

(mm)
Y

(mm)
Z

(mm)
�NRL

(dB)
�G8

(dB)

1 480 0.625 3.89 0 �86 21 �70.0 �70.9
1 640 0.469 2.91 0 �86 21 �72.3 �72.6
2 640 0.469 2.91 0 �57 10 �75.3 �76.7
3 800 0.375 2.33 0 �39 4.6 �89.5 �100.7
4 960 0.312 1.94 �12 �25 2.3 �83.6 �85.1
5 1120 0.268 1.67 0 �12 0.4 �90.9 �96.9
5 1120 0.268 1.67 �12 �12 0.9 �88.9 �94.4
5 1250 0.240 1.49 �12 �12 0.9 �87.6 �92.9

6L 1410 0.213 1.32 0 0 0 �76.8 �83.7
6L 1410 1410 1.32 �12 0 0.4 �88.2 �91.3
6H 1910 0.157 0.98 �12 13 0.5 �89.7 �91.8

aThe lowest frequency is given for each band except 6H, for which the highest frequency is given. Highest frequencies are also given for
bands 1 and 5. w0 is the beam waist half-diameter at the feedhorn. X, Y, and Z are the coordinates of the center of the feedhorn in the focal
plane. X entries labeled � indicate possible chopping positions. Z is along the optical axis and varies because the focal plane is curved.
(Those intimately familiar with Herschel are warned that this is not the convention used by the Herschel program, which interchanges
X and Z.) Local maxima in � (see text) were calculated by the NRL method and by GRASP8 (G8). The actual value of � at a particular
frequency depends on how the fringe pattern falls on a feedhorn (see figures) and on the exact distance between the focal plane and the
M2.

Table 2. Allowable �max specified for the HIFI

Band Frequency (GHz) �max (dB)

1 480 �65.0
2 640 �65.8
3 800 �66.6
4 960 �67.4
5 1120 �68.1
5 1250 �68.8

6L 1410 �69.6
6H 1910 �72.0
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propagation, that we have developed to calculate �
for a secondary mirror with a scatter cone.

We model a feedhorn as a Gaussian beam waist in
the focal plane of the telescope, but what actually
resides in the focal plane is an image of the feedhorn:
there are reimaging optics after the focal plane and
the real feedhorn resides remotely. (This accounts for
the discrepancy the astute reader will observe
between the distance from the focal plane to M2,
�2.7 m, and the distance from the mixer to M2,
�4.2 m.) We assume that the reimaging optics do not
appreciably affect the phase and amplitude structure
of the beam to and from the actual feedhorn. The
reimaging optics include steering mirrors that alter-
nate the positions of the feedhorn images in the focal
plane as they perform the chopping function. We need
to assure that the Narcissus reflection coefficient falls
below the value specified in Table 2 for all the desired
positions.

If M2 had a purely hyperboloidal shape, the com-
putation of Narcissus reflection would be trivial, as
shown in Section 2, but its value would well exceed
the HIFI specifications. Narcissus reflection is re-
duced by placing a scatter cone at the center of M2, as
shown in Fig. 1. For Herschel, the scatter cone’s ra-
dial profile is based on the work of Padman and
Hills9: it is circular with a curvature radius of
450 mm and is tangent to M2’s basic hyperboloidal
shape at a radius of 16.5 mm. There is a flat spot (not
shown in Fig. 1), 1 mm in diameter, at its apex to
discourage chipping. The scatter cone reduces Nar-
cissus reflection (as well as unwanted background
radiation from high emissivity areas around the tele-
scope’s focal plane that would degrade the sensitivity
of the PACS and the SPIRE) but makes the reflection
much more difficult to calculate.

We will calculate both � and the distribution of the
reflected radiation in the focal plane so that the effect
of changing the location of a feedhorn (while chop-
ping) can be easily visualized. These computations
are normally performed by a RF software package
such as GRASP8,13 which solves the problem by phys-
ical optics. First, the equivalent currents created by
the electromagnetic radiation from the feedhorn that
impinges on the surface of M2 are calculated. These
currents then radiate into free space and the radia-
tion at a desired point is found by summing all their
contributions. The method is time intensive because
the surface of M2 must be finely segmented so that
the sum converges to an accurate answer. In this
paper, the distribution of radiation in the focal
plane is found by the superposition-and-Fourier-
propagation method described in Section 4, an ap-
proach that takes advantage of the simple geometry
of the Cassegrain telescope to limit the time-
consuming numerical computations to that part of
the problem that cannot be solved analytically. This
part is the contribution of the scatter cone, and only
the scatter cone need be segmented, a fact that dras-
tically reduces the computational part of the problem.
Once the amplitude distribution in the focal plane is
found, the overlap integral need be evaluated only

over the beam waist to find �. The result, a complete
picture of the illumination of the focal plane and a
value for �, is obtained in less than 1 min on a 3 GHz
computer. Our calculation will be referred to as the
NRL (Naval Research Laboratory) calculation to dis-
tinguish it from the GRASP8 calculation.

The calculation will be done in stages. First the
reflection coefficient is calculated in Section 2 for a
large, complete secondary, meaning a purely hyper-
boloidal mirror with no diameter restriction. Then in
Section 3 the focal plane illumination is calculated for
a small, complete secondary, meaning the actual di-
ameter is taken into account, and in Section 4 for the
actual secondary mirror with the scatter cone. Within
this context, large means that the diameter restric-
tion on M2 is removed and complete means that only
the hyperboloidal figure is considered (no scatter
cone). In Section 5 we present a comparison of the
NRL and GRASP8 focal plane illumination calcula-
tions. Finally, the Narcissus reflection coefficients of
the seven HIFI bands are calculated and discussed in
Section 6. The results are summarized in Table 1.

2. On-Axis Reflection Coefficient for a Large,
Complete Secondary

We begin with a mathematical description of the elec-
tric field of the Gaussian beam emitted by a feedhorn
at the beam waist and in the far field at distance z
large compared with the Rayleigh distance. The in-
terested reader is referred to Ref. 14 for a thorough
introduction to this topic. At the waist, which defines
the z � 0 reference point in the focal plane, it is

EG1�r, 0� � E0 exp��r2�w0
2�, (1)

where the subscript G denotes Gaussian and 1 de-
notes the feedhorn, and at distance z it is

EG1�r, z� �

w0

2

�z E0 exp��
r2

w2�z��exp�i��r, z��, (2)

where w��z� describes the beam width at distance �z
from its waist,

w��z� �
��z

w0

, (3)

and ��r, z� is phase. The design of the feedhorns is
assumed to be such that w0  �, so w��z� is indepen-
dent of �. At the distance of M2, all the beams have
the same diameter, which is w � 137 mm. Here w0
� 3.89 mm for 480 GHz. As noted above, z � 0 in the
focal plane. In Eqs. (2) and (3) z is also the distance
from the beam waist, but this will not be true in most
of the formulas below.

We need phase, ��r, z�, only in the far field, where
the wave front is spherical and the Gouy phase shift
is constant ��
�2� and can therefore be ignored. Us-
ing k � 2
��, we write

��r, z� � k	r2 	 z2. (4)
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At the beam waist, the LO also has the form of Eq.
(1), with E0 replaced by ELO. If the beam described by
Eq. (1) were sent directly back into the feedhorn, then
the heterodyne signal that would be produced could
be written as

S1 �

0

�

EG1�r, 0�ELO exp��r2�w0
2�2
rdr

� E0ELO

0

�

exp��2r2�w0
2�2
rdr

�



2w0
2E0ELO, (5)

where the upper limit of the integrals is taken as �
because the feedhorn is assumed to have negligible
beam truncation effects.

We now find the amplitude of the beam returned to
the feedhorn by M2, assuming M2 to be large, so that
there is no diffraction from its edge, and to have no
scatter cone. The geometry of the problem is shown in
Fig. 2. M2 is the secondary mirror of a Cassegrain
telescope, so it is a hyperboloid that forms a perfect
virtual image of the center of the focal plane. Within
the useful region of the focal plane, imaging remains
essentially perfect, i.e., well within the diffraction
limit. The beam produced by reflection from M2 is
modeled as coming from this diffraction-limited vir-
tual image of the feedhorn. The distance from the
feedhorn to the secondary mirror varies as the loca-
tion of the feedhorn varies in the focal plane, which is
curved (the curvature is not shown in Fig. 2). To have
a representative number for use in the following
analysis, the on-axis distance L0 � 2638 mm will be
used. The vertex radius of the secondary is R2
� 345.2 mm, so the distance s from the vertex to the
virtual image of the feedhorn formed by the second-
ary is given by the imaging equation for a convex
reflector:

1
s �

1
L0

	
2
R2

�
1

2638 mm 	
2

345.2 mm �
1

162.0 mm.

(6)

The beam reflected from the secondary is taken to be
a Gaussian beam emitted by this virtual image, de-
scribed at the image by the equivalent of Eq. (1):

EG2�r, z � L0 	 s� �
E0

m exp��r2��mw0�2�, (7)

where m � s�L0 is the magnification, and the reader
is reminded that the zero reference point for z is in
the focal plane. We must now propagate this beam
through the distance �z � L0 	 s � 2800 mm back to
the feedhorn. We take advantage of the fact that, in
the on-axis case, neither the amplitude nor the phase
of the beam change appreciably across the feedhorn,

so only the field exactly on axis needs to be found.
Using the equivalent of Eq. (2) and writing the phase
factor in simple form results as

EG2�0, 0� �

�mw0�2

��L0 	 s�
E0

m exp�i��0, 0��

�

sw0

2

�L0�L0 	 s�
E0 exp�i��0, 0��, (8)

where ��x, y� is the phase in the focal plane. The
exact value of � depends sensitively on the geometry
and the wavelength. We set � � 0 to find that the
maximum heterodyne signal that can be produced is

S2 �

0

�

EG2�0, 0�ELO exp��r2�w0
2�2
rdr

�

sw0

2

�L0�L0 	 s�
E0ELO


0

�

exp��r2�w0
2�2
rdr

�

2sw0

4

�L0�L0 	 s�
E0ELO. (9)

We now divide by Eq. (5) and evaluate the result at
the HIFI’s lowest frequency to obtain the square root
of the maximum possible reflection coefficient at this
frequency:

	� �
S2

S1
�

2
sw0
2

�L0�L0 	 s�

�
2
 � 162 � 3.892

0.625 � 2638 � 2800 � 3.34 � 10�3, (10)

so � � 1.11 � 10�5 � �49.5 dB at 480 GHz for the
ideal on-axis case with a large, complete secondary.
Since, as noted below Eq. (3), w0  �, �  (frequen-
cy)�2.

3. E Field in the Focal Plane for a Small,
Complete Secondary

With reference to Fig. 2, the field is modeled, as in
Section 2, by use of a virtual image of the feedhorn
formed by M2 as the source, then replacing M2 with
an aperture of diameter 308 mm in the plane of the
mirror’s edge. The total sag of M2 is 34 mm and the
virtual image is located 162 mm behind M2’s vertex,
so the plane of M2’s edge is 2638 � 34 � 2672 mm
from the center of the focal plane and 162 � 34 � 128
mm from the virtual image. Thus we have a virtual
circular diffracting aperture, illuminated by a virtual
on-axis source at distance z2 ��128 mm�, and a real
on-axis observation point at distance z1 (�2672 mm).
The solution to this problem is adapted from Eq. (6) of
Sommargren and Weaver15 by using Babinet’s prin-
ciple. The field from the (virtual) source at a point on
the other side of the aperture is the sum of the direct
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beam from the source and the contribution from dif-
fraction at the rim of the aperture. When the feed-
horn is on axis, the result is easily written as

ECS(x, y, 0) � EG2(x, y, 0) � EG2(r0, z1)

�
L2

L1 	 L2
exp�ikL1�

� exp�i
r2

�L1
�J0�2
r0r

�L1
�, (11)

where the subscript CS means complete secondary
(no scatter cone); x, y, and r are Cartesian and radial
coordinates in the focal plane; and the other quanti-
ties are given in Fig. 2. The second term is taken from
Sommargren and Weaver with (a) obvious changes in
notation, (b) their isotropic point source replaced by a
Gaussian source; and (c) only the leading term, J0,
kept from an expansion of the Lommel functions. We
call the second term the Poisson spot term. Keeping
only the J0 term produces good accuracy in the region
near the center of the Poisson spot pattern, which is
the only place where the Poisson spot term makes a
sizable contribution.

The secondary mirror is illuminated by the
Gaussian beam EG1, so the amplitude |EG2�r0, z1�|
�|EG1�r0, z1�|� �
w0

2��z1�exp��r0
2�w2�z1��E0 from

Eq. (2), and E0 � >EG2�0, 0�?�L0�L0 	 s���
sw0
2� from

Eq. (8), so |EG2�r0, z1�|�|EG2�0, 0�| �L0�L0 	 s��sz1�
exp��r0

2�w2�z1��. For the on-axis case, the phase of
EG2�r0, z1� is ikL1, so Eq. (11) becomes

ECS(x, y, 0) � EG2(x, y, 0)

� �EG2(0, 0, 0)�
L0�L0 	 s�

sz1

L2

L1 	 L2

� exp��
r0

2

w2�z1��exp 2ikL1

� exp�i
r2

�L1
�J0�2
r0r

�L1
�

� EG2(x, y, 0) � 0.34�EG2(0, 0, 0)�

� exp 2ikL1 exp�i
r2

�L1
�J0�2
r0r

�L1
�,

(12)

where the Herschel parameters, r0 � 154 mm, w�z1�
� 137 mm, L0 � 2638 mm, L1 � 2676 mm, L2
� 200 mm, s � 162 mm, z1 � 2672 mm, have been
used.

When the feedhorn is off axis; the pattern described
by Eq. (12) is shifted off axis, a process that will
degrade the approximation because the true off-axis
beam will differ somewhat from a shifted on-axis
beam. In our calculation, a feedhorn at point 3 in Fig.
2 is imaged at point 4 and an axis drawn from point
4 to point 5 locates the center of the pattern, which is
described by Eq. (12) with values of r and ��r� [from
Eq. (4)] calculated appropriately for the geometry,

that is, using point 5 as the r � 0 point. We note in
passing that a scatter cone (or similar structure) may
sometimes be beneficially placed off center in the sec-
ondary if the detector is off center in the focal plane,
but such a placement would not be appropriate for
Herschel, which has several detectors spread around
the focal plane.

4. Effect of the Scatter Cone

The beam leaving the secondary mirror and return-
ing to the focal plane is modeled in the plane of the
vertex of M2 as the superposition of EG2 from Section
2 and a beam from the scatter cone composed of the
negative of EG2 plus the beam that is actually pro-
duced by the scatter cone:

ERS(x, y, L0) � EG2(x, y, L0) 	 ��EG2(x, y, L0)
	 ESC(x, y, L0)�r�rSC

� EG2(x, y, L0) 	 EFP(x, y, L0), (13)

where the subscript RS means real secondary, SC
means scatter cone, the quantity in brackets is used
only for r � rSC, where rSC is the radius of the scatter
cone, the last line defines EFP, and FP means Fourier
propagated. Equation (13) correctly describes the
beam in the plane of M2’s vertex immediately after
reflection: outside the scatter cone radius it is
EG2�x, y, L0�, within that radius it is ESC�x, y, L0�. We
must find ERS�x, y, 0�, the field in the focal plane. We
already know that, when EG2�x, y, L0� is propagated
to the focal plane, the result is ECS�x, y, 0� from Eq.
(12), so we need only propagate the quantity
EFP�x, y, L0� to the focal plane, i.e., find EFP�x, y, 0�.
The secondary is illuminated by EG1�x, y, L0� from Eq.
(2) (suitably evaluated, when needed, for an off-axis
feedhorn), and ESC�x, y, L0� is found from the phase
transformation imposed on this wavefront by the
scatter cone, as illustrated (for a lens) in Section 5.1
of Goodman.16 The sum of ESC�x, y, L0� and
�EG2�x, y, L0� is EFP�x, y, L0�, from which EFP�x, y, 0�
is obtained by Fourier propagation.16

The Fourier propagation is performed by filling an
N 	 N array with zeros except for the central M 	 M
subarray, which contains the complex field ampli-
tudes that describe EFP�x, y, L0� over the area of the
scatter cone. For the long-wavelength bands 1–3, N �
4096 and M � 64. For the short-wavelength bands
4–6, using N � 8192 and M � 128 results in a slight
improvement in accuracy. This array is Fourier
transformed, propagated through the distance to the
focal plane (the exact propagator is used, not the
Fresnel approximation), and inverse transformed to
obtain EFP�x, y, 0�, which is added to ECS�x, y, 0�, that
is,

ERS(x, y, 0) � ECS(x, y, 0) 	 EFP(x, y, 0). (14)

That an 8K � 8K array is needed at the shortest
wavelengths of interest points up a fundamental lim-
itation on the Fourier propagation method: the wave-
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front must be sufficiently densely sampled that the
phase change from sample to sample is small com-
pared to 2
 (phase sampling errors smaller than
2
�14 are needed for a diffraction-limited calcula-
tion), and the width of the area covered by the array
must be big enough that, over the desired propaga-
tion distance, negligible aliasing occurs. In our case,
because the scatter cone is designed to deflect light
into a fairly large angle, this requires a width of
approximately 2 m for the propagation distance of
nearly 3 m. When M � 128 is used to cover the 33 mm
scatter cone, one pixel � 33�128 � 0.25 mm, and an
8K 	 8K array is needed to cover a 2 m square.
Performing the same computation at shorter wave-
lengths would quickly become impossible.

5. Focal Plane Illumination and Comparison
with GRASP8

Figure 3 shows the NRL and the GRASP8 calcula-
tions of the focal plane illumination at 1410 GHz,
chosen because band 6L is the only one for which the
feedhorn can be exactly on axis. Relative intensity is
plotted along a diameter that passes through the cen-
ter of the focal plane. The two curves show excellent

agreement near the edge of the geometric shadow of
the scatter cone and outside it. The region near the
center of the shadow is shown in finer detail in Fig. 4.
In this region, the NRL calculation has a higher av-
erage level and shows much larger rapid intensity
oscillations than does GRASP8. This interference
structure comes from the Poisson spot term of Eq.
(12). At the exact center, the NRL value is approxi-
mately 6 � 10�8, and the GRASP8 value is approxi-
mately 7 � 10�9 (the reader is reminded that the
calculations give amplitudes that are squared to yield
intensities, so the calculated amplitudes at the center
differ by a factor of �3). We are not certain what
accounts for the discrepancy between the NRL and
the GRASP8 results shown in Figs. 3 and 4. The
primary difference is in the Poisson spot term, and we
note that the NRL calculation is for a scalar wave,
while GRASP8 includes polarization. This may ac-
count for at least some of the difference in reflection
from the rim of M2. We suggest that comparing the
results of GRASP8 to a theoretical calculation of Pois-
son’s spot in simpler geometry than we have here
(say, a plane wave impinging on a flat plate) would be
a good project for an interested party to address.

Fig. 3. Two curves show relative intensity, �ERS�r, 0��E0�2 � attenuation, in the focal plane for a feedhorn located at the center of the focal
plane, obtained by the NRL calculation and by GRASP8. The match between the curves validates the NRL calculation except in the region
near the center. The dashed line shows relative intensity, �EG2�r, 0��E0�2, for a large, complete secondary (no beam truncation and no scatter
cone). The vertical lines marked FH show the center position of the feedhorn and the �w0 waist half-diameters. The vertical lines near
�280 mm show the edges of the scatter cone’s geometric shadow.
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Figure 5 shows the comparison between the NRL
and the GRASP8 at 480 GHz, with the feedhorn lo-
cated 84 mm from the center of the focal plane. The
center of the figure is the center of the focal plane,
and the relative intensity is plotted along a line that
passes through the center of the focal plane and the
center of the feedhorn. Once again there is good
agreement between the calculations near and outside
the geometric shadow of the scatter cone, and in this
case the match is also fairly good at the center of the
Poisson spot pattern (i.e., at �84 mm, where the
value is approximately 6 � 10�7 for NRL, approxi-
mately 4 � 10�7 for GRASP8), but again the NRL
calculation shows much larger intensity oscillations.

The plane of Figs. 3–5 is nominally the Y axis in
Table 1, that is, it passes through the nominal, un-
chopped position of the feedhorn. In the chopped po-
sition, the image of the feedhorn is moved as much as
12 mm in the �X direction. Since the feedhorn is the
source of the pattern, as far as the figures are con-
cerned the only effect of chopping is to move the
feedhorn radially by a small amount. For channel 1,
the feedhorn moves from 84 mm to �842 	 122�1�2

� 85 mm, a negligible amount. Bands 4–6 are close
enough to the center of the focal plane for the 12 mm
change in the X direction to affect their radial dis-
tance materially, and chopped positions are shown in

Table 1 for these bands. In band 6L, moving the
feedhorn to a 12 mm off-axis position moves the Pois-
son spot pattern 12 mm in the opposite direction.
This separates the feedhorn from the Poisson spot
maximum by 24 mm and, as can be inferred from Fig.
3 and as stated explicitly in Table 1, greatly reduces
the reflection coefficient.

6. Reflection Coefficients

Once ERS�x, y, 0� is found, the integral in Eq. (9) is
performed numerically [with EG2, which is real in Eq.
(9), replaced by ERS, which is complex] and the mag-
nitude of the ratio in Eq. (10) is squared to find the
reflection coefficient. Figures 3–5 show fringe pat-
terns produced in the focal plane and, consequently,
the difference in attenuation that can result from a
slightly different placement of a feedhorn. Thus, for
example, slightly different chopping positions can re-
sult in somewhat different values of the reflection
coefficient. The same is true of different wavelengths
within a band: the fringe pattern scales with wave-
length, so a change in wavelength has an effect sim-
ilar to a change in feedhorn position. In evaluating �,
therefore, we have slightly varied the radial position
(never by more than 2 mm) from the nominal Her-
schel specification to obtain a local maximum in �.

Fig. 4. Details of Fig. 3. The solid curve shows the NRL calculation, the dotted curve that of GRASP8. In this region, the NRL calculation
has a higher average level and much larger oscillations than GRASP8.
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Results are given in Table 1 for these positions using
both the NRL and the GRASP8 calculations.

Table 1 shows that the disagreement between the
NRL and the GRASP8 calculations of illumination
discussed in Section 5 becomes, for the on-axis
1410 GHz case, a disagreement on �. The NRL value
is �76.8 dB, whereas GRASP8 gives �83.7 dB. Un-
like the other cases, which are all off axis, the on-axis
case can also be evaluated with reasonable efficiency
by executing the heterodyne detection overlap inte-
gral at the surface of M2.9 One of us (D. A. Beintema)
performed this computation and obtained a result of
�79.7 dB. The difference between NRL and GRASP8
is 6.9 dB, which is a factor of 4.9 in � or 2.2 in �1�2.
The reader is reminded that it is the latter that is
calculated directly, then squared to yield the former.
The factor of 2.2 difference in �1�2 is less than the
factor of 3 difference in amplitude cited in Section 5
because the phase of the Poisson spot term varies
across the feedhorn, so it contributes less to �1�2 than
do the other components of ERS�x, y, 0� [see Eq. (14)],
which are essentially constant across the feedhorn.
Thus, the differences among the three calculations
need not be regarded as large, especially considering
that the fields calculated are in the geometric
shadow, where the field is the sum of three large
contributions whose vector sum is close to zero: that

of M2, that of the scatter cone, and that of Poisson’s
spot. It takes only relatively small errors in the val-
ues of these large terms to cause a substantial error
in their sum.

In Table 1 we note that 480 GHz in band 1 has the
largest �, mostly because it is close enough to the
edge of the geometric shadow of the scatter cone, as
shown in Fig. 5, to receive a substantial amount of
radiation diffracted into the shadow. The 640 GHz in
band 1 has a lower � because its shorter wavelength
results in a sharper shadow edge. � is lower still for
640 GHz in band 2 because the band 2 feedhorn is
farther from the edge. Frequencies of 800 GHz and
higher fall well inside the shadow of the scatter cone
and � is dominated by diffraction from the outer edge
of the mirror, i.e., by the Poisson spot term in Eq. (12).
The � values at higher frequencies are generally
around �90 dB except for the special case of
1410 GHz in the on-axis (unchopped) position, which
is much higher because its central position causes it
to be exposed to the maximum of the pattern, i.e., to
Poisson’s spot itself. As discussed in Section 5, the
disagreement between the NRL calculation and
the GRASP8 is maximal at this point, but even the
higher NRL calculation shows the reflection coeffi-
cient to be below the specification in Table 2. Table 2
gives the maximum allowable values of � specified by

Fig. 5. Comparison of the NRL calculation and GRASP8 at 480 GHz and feedhorn 84 mm from the center of the focal plane. The NRL
calculation has larger oscillations in the geometric shadow of the scatter cone than does GRASP8.
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the HIFI. All the calculated values in Table 1 are well
below the specifications: the design of the scatter cone
meets its performance criteria.

7. Conclusion

A hybrid analytical–numerical method for calculat-
ing Narcissus reflection at submillimeter wave-
lengths for the simple geometry of a small scatter
cone on the secondary mirror of a Cassegrain tele-
scope has been described. The method has been val-
idated by comparison to the results of the GRASP8
physical optics code and has verified the theoretical
performance of the Herschel scatter cone, as shown in
Table 1 and Figs. 3–5. The method has the advantage
of speed. For example, it generated Fig. 3 and the
corresponding reflection coefficient in Table 1 in less
than 1 min on a 3 GHz computer. GRASP8 required
approximately 1.5 h and 12 min, respectively, on a
2.2 GHz machine.

We suggest that polarization-dependent reflection
from the rim of M2 may be responsible, at least in
part, for the discrepancies shown in Figs. 3–5 be-
tween the NRL and the GRASP8 calculations, and we
recommend further investigation of this point to any
interested party.
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of the California Institute of Technology.
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